Maximum decay rate for the nonlinear Schr�dinger equation
نویسندگان
چکیده
منابع مشابه
Vortex nucleation in a dissipative variant of the nonlinear Schrdinger equation under rotation
In the present work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of ...
متن کاملNearly a polynomial decay rate for the dissipative wave equation
The study of stabilization of the linear dissipative wave equation in a bounded domain with Dirichlet boundary condition is now an old problem. The exponential decay rate of the energy was established by Bardos, Lebeau and Rauch [ BLR] under a geometrical hypothesis linked with the geodesics. Furthermore such condition called geometric control condition is almost necessary to get a uniform expo...
متن کاملPolynomial decay rate for the dissipative wave equation
This paper is devoted to study the stabilization of the linear wave equation in a bounded domain damped in a subdomain when the geometrical control condition (see [ BLR]) of the work of C. Bardos, G. Lebeau and J. Rauch is not fulfilled. In such case, they [ BLR] proved that the uniform exponential decay rate of the energy cannot be hoped due to the existence of a trapped ray that never reaches...
متن کاملDecay of Mass for Nonlinear Equation with Fractional Laplacian
where the pseudo-differential operator Λ = (−∆)α/2 with 0 < α ≤ 2 is defined by the Fourier transformation: Λ̂αu(ξ) = |ξ|αû(ξ). Moreover, we assume that λ ∈ {−1, 1} and p > 1. Nonlinear evolution problems involving fractional Laplacian describing the anomalous diffusion (or α-stable Lévy diffusion) have been extensively studied in the mathematical and physical literature (see [2, 11, 5] for refe...
متن کاملDecay and Growth for a Nonlinear Parabolic Difference Equation
We prove a difference equation analogue of the decay-of-mass result for the nonlinear parabolic equation ut = ∆u+ μ|∇u| when μ < 0, and a new growth result when μ > 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2004
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-004-2003-7